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AB ST RAC T 

This  repor t  briefly presents  the r e su l t s  to date of two continuing pro-  

g r a m s ,  viz., the measurements  of radio me teo r  flux at Havana, Illinois, and 

the measu remen t  of micrometeoroid flux on the OGO-2 satell i te.  

The average  cumulative radio m e t e o r  influx a s  a function of m a s s  i s  

given by log I = - 14. 0 - 1 ,  05 log m 

square  m e t e r  pe r  second, and m 

where  I is  the influx in  me teo r s  pe r  
00’ 

is the me teo r  mass in g r a m s .  
00 

No m o r e  than two impacts of micrometeoro ids  of mass g r e a t e r  than 

g m  have been recorded by the OGO-2 satell i te experiment .  This  fact  

-2  - 2  -1 
suggests  that  the average cumulative flux of such par t ic les  during the period 

October 1965 through March  1966 i s  less than 3 X 10  par t ic les  m sec  

(27-r s t e r )  . -1 

F r o m  these and other resu l t s  it appea r s  that  there  i s  no radical  depar ture  

f r o m  the constant mass p e r  magnitude dis t r ibut ion of me teo r i c  ma te r i a l  i n  the 

neighborhood of the ear th ,  

iv 



C e  rnppor t  p rdsente  brigvement l e s  d e r n i e r s  r k s u l t a t s  de 

deux programmes en c o u r s ,  & savoi r  l e s  mesures de f l u x  de r a d i o  

m6t;ores Havana ( I l l i n o i s ) ,  e t  l e s  mes!ires du f l u x  de micro- 

mgt6roide.s r e su  par  l e  s a t e l l i t e  OGO-2. 

Le f l u x  inc iden t  cumule' moyen de r a d i o  me'tbores e s t  donne' 

en fonc t ion  de l a  mzsse par log I = - 14,O - 1,05 l o g  m a ,  ob 

I e s t  l e  f l u x  inc ident  en me'te'ores pa r  m 6 t r e  car re ,  p s r  secoride, 

e t  m co , l a  masse du me*t&ore en grammes. 

Parmi l e s  imp-.cts e n r e g i s t r g s  au cour s  de l ' exp6r i ence  du 

s a t e l l i z e  OGO-2, deux seuleinent provenaient  de microm&:t&orides 

de masse supbr ieure  h 10-12gm. 

pendant l a  p6riode a l l a n t  d 'octobre 1965 jusqu 'k  m a r s  1966, l e  

p a r t i c u l e s  m sec ( 2  r s t e r a d .  1 - l .  

C e  f a i t  l a i s s e  k penser que,  

f l u x  moyen cumul6 de t e l l e s  p s r t i c u l e s  ne de'passait pas  3 x 10 -2 

-2 -1 

C e s  r 6 s u l t a t s  a i n s i  que c e r t a i n s  a u t r e s  montrent que l a  

d i s t r i b u t i o n  de mate'riau m&t&orique ne s ' g c a r t e  pas  de manigre 

importante  de l a  l o i  de masse cons t an te  h grandeur cons t an te ,  

au vois inage  de l a 2  t e r r e .  

V 



b 

vi 



THE FLUX O F  METEORS AND MICROMETEOROIDS IN THE 
J, 

NEIGHBORHOOD OF THE EARTH“’ 

C.  S. Nilsson and R. B. Southworth 

C 

1. INTRODUCTION 

This paper presents  some resul ts  concerning the cumulative influx of 

m e t e o r s  and micrometeoro ids  during the period 1965 to 1967. 

data  were  obtained f r o m  the Havana meteor  equipment operated by the 

Smithsonian Astrophysical  Observatory,  Cambridge,  Massachuse t t s ;  the m i c r o -  

meteoro id  data ,  f r o m  a detector  on the Orbiting Geophysical Observatory,  

OGO-2, launched in October 1965 f r o m  California into a polar orb i t  of low 

eccentr ic i ty  . 

The me teo r  

The technique of measu r ing  micrometeoroid flux with the detector  de- 

s c r ibed  in  Section 3 is v e r y  straightforward, but the method of measur ing  

the influx of m e t e o r s  with the Havana radio me teo r  equipment w a r r a n t s  some 

introductory r emarks .  

With a given t r ansmi t t e r  power and p rese t  limiting r ece ive r  sensitivity, 

the m e t e o r  equipment wil l  count a me teo r  eve ry  t ime  the re turned  r a d a r  echo 

f r o m  the me teo r  t r a i l  exceeds the appropriate  magnitude. 

f a c t o r s  to consider  i n  o r d e r  to relate these echo counts to  meaningful me teo r  

inf lux values. 

There  a r e  many 

The Radio Meteor  P ro jec t  work was done under NASA Contract  
NSR 09-015-033. The OGO-2 data reduction was  done under NASA Contract  

P r e s e n t e d  at the International Astronomical  Union Symposium, Commission 
No. 33, Phys ics  and Dynamics of Meteors ,  Ta t ranska  Lomnica,  
C z e  c ho s lovakia, Se ptembe r 1 9 67. 

NAS 5-11007. 
4. .I- 
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F i r s t ,  one has  to re la te  the electron density of a me teo r  t r a i l  to  the 

s t rength of the received echo. 

pa rame te r s ,  including antenna gain in the appropr ia te  direction. A s  individ- 

ual echo direct ions a r e  not recorded,  the echo counts r ep resen t  the integrated 

s y s t e m  response over  all  the sky. Thus, fo r  example,  to de te rmine  theo re t -  

ical ly  the var ia t ion of echo counts with t ime,  i t  i s  necessa ry  to  know the 

dis t r ibut ion of me teo r  radiants  over  the ce les t ia l  sphere.  

(1964) have d iscussed  these problems in some detail  for  the Havana me teo r  

equipment and have derived numerical  re la t ions between echo counts and 

me teo r  influx, F, a s  a function of equipment sensit ivity,  S. It i s  the purpose 

of this  paper  to  t r e a t  the la tes t  echo-count data in t e r m s  of the i r  work, and 

s o  der ive  the la tes t  influx values. 

it is necessa ry  to  know the relation between me teo r  m a s s  and e lec t ron  t r a i l  

density. 

l a t e s t  f igures  der ived by Verniani and Hawkins (1965). 

This re la t ion depends on the var ious  r a d a r  

Elford and Hawkins 

If we a r e  to  re la te  influx to me teo r  m a s s ,  

This  i s  a separa te  and difficult problem, and we simply use  the 

2 



2. METEOR I N F L U X  

2.  1 Equipment 

L 

2 

The observed me teo r  r a t e s  a re  recorded automatical ly  f r o m  an  Echo 

Analyzer designed and built by M. Schaffner f o r  this project .  

counts the number of me teo r  echoes received in given in te rva ls  of t ime down 

to four  different limiting r ece ive r  sensi t ivi t ies ,  which cover  the useful 

dynamic range of the sys tem.  

This  device 

This i s  about two o r d e r s  of magnitude in 

r ece ive r  sensit ivity.  

r ece ive r  level sample a t  least  once every  half hour, the peak t r ansmi t t e r  

power (measured  r a the r  poorly within the t r ansmi t t e r ) ,  and the limiting 

r ece ive r  sensi t ivi t ies  a t  each  level. 

The data  for each  day include the echo counts for  each  

2. 2 Methods of Analysis 

A typical period of recording consis ts  of about 5 days in which me teo r  

counts a t  the four levels  have been continuously recorded  fo r  about 10 hours  

e a c h  day. 

fu l l  24 hours ,  albeit  s e v e r a l  days '  data  mus t  be combined. 

d iurna l  variation of r a t e  representat ive of the week a s  a whole i s  thus obtained, 

and the sums  of counts of each  half hour over  the total  recording period of 

each  day a t  each  level  of sensitivity a r e  then normalized with r e spec t  to this 

observed  diurnal  ra te  curve.  This allows fo r  the fac t  that  these s u m s  of 

counts a r e  obtained over  different and incomplete per iods of the day, during 

which t ime the me teo r  detection rate va r i e s  quite markedly.  

ized s u m s  of the half-hourly counts a t  each  level fo r  each  day constitute the 

bas i c  m e a s u r e s  used to determine the absolute influx. F o r  selected days of 

the y e a r ,  E l fo rd  and Hawkins (1964) have related absolute influx to me teo r  

counts,  using an average radiant distribution der ived f r o m  Havana me teo r s ,  

and antenna pa t te rns  measured  on model antennas.  

normal ize  our  daily s u m s  with respec t  to their  data  fo r  the appropriate  day 

This period of recording usually gives adequate coverage over  the 

An observed 

These normal -  

All  we need to do is 

3 
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of the year.  

absolute mean influx averaged  over the celest ia l  sphere per  unit solid angle 

a t  each level of sensitivity for  each day of observation. 

i s  the cumulative flux on the surface of the ea r th  of m e t e o r s  f r o m  the whole 

ce les t ia l  sphere that produce t ra i ls  with line densi t ies  g rea t e r  than a given 

value q .  

tion of sensitivity S, the la t te r  being d i rec t ly  proportional to the minimum 

observable line density q .  

Our sums,  now fully normalized,  represent  values of F ,  the 

The expression TrF(q) 

Five days '  observations thus give us about 20 values of F a s  a func- 

2. 3 Discussion of Results 

A l eas t - squares  f i t  of log F against  log S has been made for  each week 

of observations,  and the variation of the bes t  value of log F at  about the center  

of the dynamic range of the sys tem is  shown in Figure 1. Major  showers  have 

been exc ludedfrom the data. Verniani and Hawkins (1965) discussed a random 

sample  of Havana meteors ,  i n  lieu of any bet ter  information we have related 

the limiting values of q ( in  electrons per  me te r )  to a limiting m a s s  m (in 

g r a m s )  by adopting the average rat io  of q to  m a s s  in their  samples:  

log m - - 16.6. The values of log F in F igure  1, in fact, co r -  

respond to a calculated minimum m e t e o r  m a s s  of 1 X 10 

our  present  poor knowledge of ionization probability, there  i s  a la rge  un- 

cer ta inty in th i s  value of limiting m a s s .  

m o r e  than a factor of 2 variation in calculated influx during 1966, with the 

suggestion of a minimum in March 1967. 

values  of the 95% confidence l imits,  based  only on the numer ica l  data. 

-5 00 - log L a x  
gm. Considering 

It can be seen that there  i s  slightly 

The e r r o r  b a r s  represent  s ta t is t ical  

These figures should be treated ve ry  cautiously. Although we monitor 

the t ransmi t te r  and receiver  levels, other i t ems  of the equipment affect the 

counting r a t e s .  

not monitored closely, and some deter iorat ion was discovered in 1967. 

Elford and Hawkins (1964) considered the motion of the ecliptic in the sky, 

but not a variation of meteor  density along the ea r th ' s  orbit .  

normal ized  our counts on the basis of their  calculated ra te  variations through- 

out the year .  These expected counts, for  a constant value of inf1i.m F i  a r e  

shown a t  the top of Figure 1 on a relative scale  of the s a m e  amplitude a s  the 

F o r  example,  the antennas and associated feeder l ines were  

We have 

4 



computed values of log F below. 

expected around M a r c h  21, which is when we have a suggestion of a minimum 

in the actual  m e a s u r e s  of the absolute influx F. 

we have not allowed sufficiently for  the annual var ia t ion;  on the o ther  hand, i t  

may  only be a coincidence. In any event,  our  data do not prove any variation 

in me teo r  influx f r o m  one yea r  to another.  

We s e e  that a minimum in me teo r  ra te  is 

This  suggests  that  perhaps  

c 0 

0 

0 

0 

0 

0 

1966 1967 

F i g u r e  1. Top: 
F, plotted on the same scale  a s  below. Bottom: Calculated values 
of F in m e t e o r s  k m - 2  h r - l ,  the flux p e r  unit solid angle of the 
ce les t ia l  sphere  producing trails of maximum line densi t ies  

The expected annual var ia t ion of me teo r  ra te  for  constant 

> 3 . $ ,  ?(, eler,trc)n 34. 
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The regress ion  analyses of log F on log S give values of the slope of 

cumulative f l u x  versus  t r a i l  density f o r  each  weekly period of observation. 

These values generally fa l l  betweell -1.0 and -1. 1, as  can  be seen  f r o m  

Figure 2. There  does not appear to be any obvious regular  var ia t ion over  

the 

W 

0 
A 
v, 

n 

y e a r .  

- 1 . 1  

-0.9 

-0.8 

* =  
1 

f 

1966 1967 

Figure  2. The calculated values of s lopes of the cumulative f l u x  ve r sus  sen-  
si t ivity regress ion  analyses. 

If we pool all the data, we  find that the cumulative influx I of me teo r s  

p e r  square  m e t e r  p e r  second onto the surface of the e a r t h  is given by 

log I = -14.0 - 1.05 log ma. 
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3 .  MICROMETEOROID FLUX 

3 .  1 Equipment 

The experiment  flown on OGO-2 consis ts  basical ly  of four tubular 

detectors  ( see  F igure  3 ) .  E a c h  tube is about 10 c m  long and 2. 5 c m  in d i am-  

e t e r ,  forming a crude coll imating sys t em that r e s t r i c t s  the angle of a r r i v a l  of 

a par t ic le  detected on the r e a r  sensors .  

mutually perpendicular directions.  There  a r e  three  s e n s o r s  to each  tube. 

A part ic le  f i r s t  pas ses  through the two v e r y  thin films - each  about 1500 A 
th ick-  a t  the f ron t  of each  tube and gives rise to a small p lasma pulse, which 

i s  used to s t a r t  an osci l la tor  to measure  the t ime of flight down the tube. 

the r e a r  of the tube, the par t ic le  impacts destruct ively on a thin-film capaci tor  

deposited on a g l a s s  disk.  

t ime-of-fl ight osci l la tor  and to provide some  m e a s u r e  of the energy of the  

par t ic le .  A microphone c rys t a l  is bonded t o  the rear of each  g lass  disk t o  

m e a s u r e  the momentum of the particle.  

s e n s o r  is  about 1 X 1 0  

respond to i ron  par t ic les  of 10  

s e c  There  a r e  data  to indicate it would respond to par t ic les  of mass l e s s  

than  gm at  higher  velocities, although the exact velocity dependence of 

t h i s  sensor  has  not been properly established. 

s i t ive sensor  of the th ree  in each tube. 

Three  of the four tubes point in 

At 

The pulse f r o m  this  capaci tor  is used to stop the 

The l imiting sensit ivity of the l a t t e r  
-4 dyne-sec; t he  capaci tor  s e n s o r  has  been shown to  

-11  g m  impacting at speeds l e s s  than 3 k m  
- 1  . 

It i s  cer ta inly the mos t  sen-  

A continuous in-flight calibration sys t em monitored all these  s e n s o r s  and 

the  associated e lec t ronics  f o r  the 1 y e a r  during which data  w e r e  recorded.  

One r e a r  capaci tor  sensor  shorted out during this  t ime,  but this could not 

have been due to par t ic le  impact  s ince the de tec tor  i n  question was  the one 

used  for  noise control  and was  shielded f r o m  par t ic le  impact  by a me ta l  disk 

placed ahead of the front  films. 

ably su re  the experiment  has  operated proper ly  f r o m  launch in  October 1965 
a t  l ea s t  through March  1966, the  period f o r  which data  have been analyzed. 

F r o m  these  and other  data  we a r e  reason-  

7 



Figure 3 .  The basic OGO-2 micrometeoroid detect3r  tube. 

Sensor  output data a r e  recorded i f  e i ther  of the two r e a r  s enso r s  responds 

to an  event. Noise o r  micrometeoroid events affecting only the front  s enso r s  

would not appear in the OGO-2 data. 

the recognition of a micrometeoroid impact  a response f r o m  a t  leas t  the r e a r  

capaci tor  sensor .  

radioed to the spacecraf t  since some of these commands give r i s e  to inter-  

f e rence  detected by the instrument.  

Thus we have chosen as  a c r i te r ion  for  

Fur the rmore ,  this event mus t  not coincide with a command 

3 .  2 Results of Data 

More  than a thousand events f r o m  the microphone senso r s  have been 

recorded .  

f r o m  the other s enso r s  and have been shown to be due to noise generated 

within the instrument  itself under conditions of changing temperature  

These events have not been associated with any genuine response 

8 
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5 

I 

(Nilsson, 1966).  This  conclusion, at leas t  for this  instrument ,  has  been 

verified beyond any reasonable  doubt by labora tory  and in-flight tes t s .  

Severa l  hundred events, masquerading a s  micrometeoro id  impacts ,  

w e r e  recorded  on the r e a r  capacitor s e n s o r s  i n  1300 hours  of data. 

but two cases ,  these events were  t r aceab le  to e lectronic  in te r fe rence  a r i s ing  

f r o m  commands sent to  the spacecraft .  

micrometeoro id  impacts  in  1240 hours  of data. 

events being r e a l  mus t  be considered low. 

the rear senso r s  is 0. 8 c m  

events a s  a n  upper  l imit  to  the flux, we find that the average flux of par t ic les  

of mass g r e a t e r  than 10-l '  gm during the period October 1965 through March  

1966 i s  l e s s  than 3 X lo - '  particle rn-' sec  

In a l l  

We a r e  thus left with two possible 

The probability of these two 

The total  effective a r e a  of a l l  

s t e r ;  hence,  i f  we use  these two possible 2 

- 1  ( 2 7 ~  s t e r ) - ' .  

More  data  r ema in  to  be analyzed; in  addition, a n  improved ins t rument  

This l a t t e r  exper iment  has recent ly  been launched on the OGO-4 satel l i te .  

will r eco rd  any events occurr ing on any of the senso r s ,  alone o r  in conjunc- 

tion with other  s e n s o r  responses .  Thus,  par t ic les  impacting the f ront  films 

but not reaching the r e a r  s enso r s  will be recognized and counted. 

i nc reased  angle of acceptance will raise the effective a r e a  fo r  f l u x  m e a s u r e -  

m e n t  purposes  to about 30 cm This may  eventually provide us  with a 

rel iable  satel l i te  m e a s u r e  of the flux of these small par t ic les  in the neighbor- 

hood of the e a r t h  

The 

2 s te r .  

3 .  3 Conclusion 

F igu re  4 shows the radio meteor  flux as a function of mass (designated 

on the f igure  as Radio Meteor  Project 1967) ,  together with the data  point 

f r o m  OGO-2 (which is real ly  only an upper limit). Some frequently published 

cumulative flux v e r s u s  mass curves,  as wel l  as the satell i te penetration data  

of Naumann (1966),  have been added f o r  comparison.  

r e c e n t  r e su i t s  i t  appears  that there is s t i i i  no rad ica i  depar ture  f r o m  the 

F r o m  the th ree  most  

9 
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constant mass p e r  magnitude distribution of meteor ic  ma te r i a l  in the neighbor- 

hood of the ear th .  
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F i g u r e  4. Cumulative f l u x  ve r sus  mass curves  based on data  f r o m  various 
sou rces  (originally drawn by C. W. McCracken and M. Dubin, 
NASA Tech. Note X-6  13-6 3- 185, 1963).  
found in original text. ) 

(References m a y  be 
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NO TIC E 

Thi.s ser'ies of Special  Reports was instituted under the supervis ion 
of Dr .  F. L. Whipple, Director  of the Astrophysical  Observa tory  of the 
Smithsonian Institution, shortly a f te r  the launching of the first ar t i f ic ia l  
ea r th  satel l i te  on October  4, 1957. Contributions come f r o m  the Staff 
of the Observatory.  

First i s sued  to e n s u r e  the immediate disseminat ion of data fo r  sa te l -  
l i te  tracking, the r epor t s  have continued to provide a rapid distribution 
of catalogs of satel l i te  observat ions,  orbi ta l  information, and p re l imi -  
n a r y  resu l t s  of data  analyses  p r io r  to fo rma l  publication in the appro-  
pr ia te  journals.  The Reports  a r e  a l so  used extensively for  the rapid 
publication of p re l imina ry  o r  special  resu l t s  in  other  fields of a s t r o -  
physics .  

The Reports  a r e  regular ly  distributed to all institutions par t ic i -  
pating in the U. S .  space  r e s e a r c h  p r o g r a m  and to individual sc ien t i s t s  
who reques t  t hem f r o m  the Publications Division, Distribution Section, 
Smithsonian Astrophysical  Observatory,  Cambridge,  Massachuse t t s  
02138. 
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